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Tables of the scanning of two-dimensional space groups are presented to

determine the frieze-group symmetry of lines that transect two-dimensional

crystals. It is shown how these tables can be used to predict the (001) projection

symmetries of migration-related segments of coincidence site lattice tilt

boundaries with [001] tilt axis.

1. Introduction

The term scanning was introduced by Kopský (1990) for the process

of determining the spatial distribution of local symmetries in a crystal.

Using this terminology, the description of site point-group symme-

tries of points by Wyckoff positions in International Tables for

Crystallography, Volume A, Space-Group Symmetry (ITA; Hahn,

2005) and Volume E, Subperiodic Groups (ITE; Kopský & Litvin,

2010) is the result of the scanning of three-dimensional space groups

and subperiodic groups for point-group symmetries of points in a

crystal. The description of the symmetries of planes that transect

three-dimensional crystals by layer groups in Volume E, Subperiodic

Groups (ITE; Kopský & Litvin, 2010) is the result of the scanning of

three-dimensional space groups for the layer-group symmetries of the

planes.

In x2 we give tables of the results of the scanning of two-

dimensional space groups for the frieze-group symmetries of lines

that transect two-dimensional crystals. In x3, it is shown how these

tables can be used to predict the (001) projection symmetries of

migration-related segments of coincidence site lattice tilt boundaries

with [001] tilt axis.

2. Scanning of two-dimensional space groups

The conventional coordinate system of a two-dimensional space

group consists of an origin, denoted by P, and two vectors a and b, the

conventional basis (see Fig. 1). The two-dimensional space can be

transected by a straight line in a crystallographic direction given by

Miller directional indices ½n;m� where n and m are integers. That is,

there are pairs of points on this line separated by a vector na + mb.

This guarantees that the subgroup of the two-dimensional space

group that leaves the line invariant contains a one-dimensional

translational subgroup, i.e. that the subgroup is a frieze group. The

position of the line in the two-dimensional space is specified by a

vector d and real number ‘s’, P + sd being a point on the line.

The scanning tables of the scanning of two-dimensional space

groups to determine the frieze-group symmetry of lines that transect

two-dimensional crystals consist of six columns (see Table 11):

(i) Two-dimensional space group. Following ITA (Hahn, 2005), the

sequential numbering, Hermann–Mauguin symbol and symmetry

diagram of each two-dimensional space group are given.

(ii) Direction. The direction of the line transecting a two-

dimensional crystal of the given two-dimensional space group is

specified by Miller directional indices ½n;m�. For specific directions, n

and m are fixed integers. For general directions, n and m are integer

variables. When a two-dimensional space group contains both specific

and general directions, the general directions ½n;m� do not include

the given specific directions. For example, in the case of p4mm (see

Table 1), the general directions ½n;m] do not include [1, 0], [0, 1],

[1, 1] or [1, �1].

Only directions are listed that are directions of lines with frieze-

group symmetry having, for some position of the line, non-

translational symmetry operations in addition to the identity

symmetry operation. To have such additional symmetry operations,

a line must pass through a twofold rotation point, overlap or be

perpendicular to a mirror line, or overlap a glide line in the symmetry

diagram. Consequently, no directions are listed for the two two-

dimensional space group Nos. 1 p1 and 13 p3.

(iii) aF. The translation aF denotes the generator of the transla-

tional subgroup of the frieze-group symmetry of the line whose

direction is given in the second column. For general directions ½n;m�

aF = na + mb.

(iv) d. The vector d, a translational vector of the two-dimensional

space group, along with a real number s, specifies a vector sd which is

used to determine the position of the line whose direction is given in

the second column. The position of the line is specified by a point P +

sd on the line (see Fig. 1). For general directions ½n;m�, n and m are

mutually prime integers and d = pa � qb where nqþmp ¼ 1.

(v) Linear orbit sd. The infinite set of all parallel lines of a specific

direction which transect a crystal can be subdivided into subsets

called linear orbits. All parallel lines obtained by applying all
Figure 1
Position and direction of a line: P and a, b denote, respectively, the origin and
conventional basis of the conventional coordinate system of a two-dimensional
space group. The direction of a line transecting a crystal of this two-dimensional
space-group symmetry is denoted by Miller directional indices ½n;m�. The position
of the line is given by a vector d and a real number s, the vector sd going from the
origin to a point P + sd on the line.

1 The complete two-dimensional space-group scanning tables are available
from the IUCr electronic archives (Reference: TD5021) and at http://
www.bk.psu.edu/faculty/litvin/Cv.html.
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elements of the two-dimensional space group to any one line of a

specified orientation constitute a single linear orbit. The linear orbit

of parallel lines which contain the line at the position P + s1d is

denoted by

½s1dþ nd; s2dþ nd; . . . ; sqdþ nd�

where n 2 Z and sid, i = 2, 3, . . . , q are a set of position vectors

related to s1d by non-translational symmetry elements. For typo-

graphical simplicity, only these later position vectors are explicitly

listed in the tables, i.e. a linear orbit is denoted by [s1d, s2d, . . . , sqd].

If this set of vectors contains a single vector [sd] then it is written

without the brackets. The linear orbit or orbits sd of lines of the

direction in column two and vector d of column four are given in

column five.

(vi) Frieze group. The frieze group of lines of direction given in

column two and orientation orbit sd of column five is given in column

six in both Hermann–Mauguin notation and the sequential

numbering of ITE (Kopský & Litvin, 2010). If the origin of the frieze

group at P + sd is not the same as the choice of the origin in the

representative frieze group given in ITE (Kopský & Litvin, 2010),

then the origin is translated to P + sd + s where s is given in

parentheses after the Hermann–Mauguin frieze-group symbol. For

example (see Table 1), for the direction [1, 1] and linear orbit [1
4d, 3

4d]

the frieze group is given as p2mg (aF/4) where aF = a + b.

3. Symmetry of coincidence site
lattice boundaries

Moeck et al. (2014) have derived a two-

step method to predict the (001) projec-

tion symmetries of migration-related

segments of coincidence site lattice tilt

boundaries with a [001] tilt axis for all

holohedral cubic materials. Their method,

in the terminology of bicrystallography, is

the sectioning of a black–white plane

group of a dichromatic pattern, and is

analogous to the scanning of magnetic

space groups in the analysis of non-

magnetic domain walls (Janovec & Litvin,

2007). As we now show, these two steps

are easily performed with the tabular

information provided here.

In the example given in Moeck et al.

(2014), the first step is the sectioning of

p4m0m0, a black–white plane group of the

overlapping projections of two crystal

structures, along lines in the [1, 1] direc-

tion. The color exchange operation is

interpreted as the exchange of the two

crystal structures (Janovec & Přı́vratská,

2003). This gave rise to three dichromatic

frieze groups, p2m0m0, p2m0g0 and p1m01,

depending on the sectioning line’s posi-

tion. Black–white groups are isomorphic

with magnetic groups (Litvin, 2013).

Consequently, the sectioning of black–

white plane groups is isomorphic with the

scanning of two-dimensional magnetic

space groups. The scanning table of the

two-dimensional magnetic space group

p4m0m0 can be derived from the scanning

table of the two-dimensional space group p4mm (Table 1) (Litvin &

Kopsky, 1997; Janovec & Litvin, 2007) and is given in Table 2. The

three magnetic frieze groups of lines of the direction [1, 1], i.e. the

three dichromatic frieze groups p2m0m0, p2m0g0 and p1m01 (Moeck et

al., 2014) can be read directly off Table 2 along with their positions.
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Table 2
Scanning of two-dimensional magnetic space group p4m0m0 giving the magnetic frieze-group symmetry of lines of a
given direction and position P + sd.

The magnetic frieze-group numbering is that of Litvin (2013).

Two-dimensional magnetic space group Direction aF d Linear orbit sd Magnetic frieze group

p4m0m0 [1, 0] a b 0d, 1
2d p2m0m0 6.3.22

[sd, �sd] p1m01 3.3.10

[0, 1] b a 0d, 1
2d p2m0m0 6.3.22

[sd, �sd] p1m01 3.3.10

[1, 1] a + b a � b [0d, 1
2d] p2m0m0 6.3.22

[1
4d, 3

4d] p2m0g0 (aF/4) 7.3.29

[�sd, (�s + 1
2)d] p1m01 3.3.10

[1, �1] a � b a + b [0d, 1
2d] p2m0m0 6.3.22

[1
4d, 3

4d] p2m0g0 (aF/4) 7.3.29

[�sd, (�s + 1
2)d] p1m01 3.3.10

½n;m� na + mb pa � qb 0d, 1
2d p211 2.1.4

[sd, �sd] p1 1.1.1

Table 1
Scanning of two-dimensional space group p4mm giving the frieze-group symmetry of lines of a given direction and
position P + sd.

The origin P is taken to be in the upper left-hand corner of the group symmetry diagram.

Two-dimensional space group Direction aF d Linear orbit sd Frieze group

No. 11 p4mm [1, 0] a b 0d, 1
2d p2mm F6

[sd, �sd] p1m1 F3

[0, 1] b a 0d, 1
2d p2mm F6

[sd, �sd] p1m1 F3

[1, 1] a + b a � b [0d, 1
2d] p2mm F6

[1
4d, 3

4d] p2mg (aF/4) F7

[�sd, (�s + 1
2)d] p1m1 F3

[1, �1] a � b a + b [0d, 1
2d] p2mm F6

[1
4d, 3

4d] p2mg (aF/4) F7

[�sd, (�s + 1
2)d] p1m1 F3

[n, m] na + mb pa � qb 0d, 1
2d p211 F2

[sd, �sd] p1 F1

Table 3
The reduction in frieze-group symmetry when one structure is removed from one
side of the sectioning line and the second structure is removed from the other side
of the sectioning line; structures on opposite sides now of opposite color.

Change in origin and convectional basis of frieze group, if any, is given after the reduced
frieze-group symbol.

p1 ! p1 p11g ! p1
p110 ! p1 p11g10 ! p11g0

p2a1 ! p1(0, 0; 2a, b) p11g0 ! p11g0

p 211 ! p1 p2mm ! p1m1
p21110 ! p2011 p2mm10 ! p20mm0

p2011 ! p2011 p2m0m0 ! p11m0

p2a211 ! p2011(1
2, 0; 2a, b) p20mm0 ! p20mm0

p20m0m ! p2011
p1m1 ! p1m1 p2a2m0m0 ! p20mm0(1

2, 0; 2a, b)
p1m110 ! p1m1 p2a2mm ! p20mg0(1

2, 0; 2a, b)
p1m01 ! p1
p2a1m1 ! p1m1(0, 0; 2a, b) p2mg ! p1m1

p2mg10 ! p20mg0

p11m ! p1 p2m0g0 ! p11g0

p11m10 ! p11m0 p20mg0 ! p20mg0

p11m0 ! p11m0 p20m0g ! p2011
p2a11m0 ! p11m0(0, 0; 2a, b)
p2a11m ! p11g0(0, 0; 2a, b)



The second step is to determine the reduction in frieze-group

symmetry when in the overlapping projections of the two crystal

structures, one structure is removed from one side of the sectioning

line and the second structure is removed from the other side of the

sectioning line. The structures on opposite sides of the sectioning line

are now of opposite color and frieze-group symmetry elements are

limited to (i) twofold rotation points and mirror and glide planes

parallel to the sectioning line all coupled (primed) with a color

exchange and (ii) mirror planes perpendicular to the sectioning

line not coupled (not primed) with a color exchange. This reduction

in all types of magnetic frieze groups is given in Table 3. From this

table one immediately finds that the three dichromatic frieze

groups p2m0m0, p2m0g0 and p1m01 are reduced, respectively, to the

three groups p11m0, p11g0 and p1 in agreement with Moeck et al.

(2014).

Discussions with V. Kopský are gratefully acknowledged.
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